Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37893666

RESUMO

The selenization of natural products refers to the chemical modification method of artificially introducing selenium atoms into natural products to interact with the functional groups in the target molecule to form selenides. Nowadays, even though scientists in fields involving organic selenium compounds have achieved numerous results due to their continuous investment, few comprehensive and systematic summaries relating to their research results can be found. The present paper summarizes the selenization modification methods of several kinds of important natural products, such as polysaccharides, proteins/polypeptides, polyphenols, lipids, and cyclic compounds, as well as the basic principles or mechanisms of the selenizing methods. On this basis, this paper explored the future development trend of the research field relating to selenized natural products, and it is hoped to provide some suggestions for directional selenization modification and the application of natural active ingredients.

2.
Plants (Basel) ; 12(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687342

RESUMO

In karst habitats under drought conditions, high bicarbonate (high pH), and an abundant nitrate soil environment, bicarbonate regulates the glycolysis (EMP) and pentose phosphate pathways (PPP), which distribute ATP and NADPH, affecting nitrate (NO3-) and ammonium (NH4+) utilization in plants. However, the relationship between EMP PPP and NO3-, and NH4+ utilization and their responses to bicarbonate and variable ammonium still remains elusive. In this study, we used Brassica napus (Bn, a non-karst-adaptable plant) and Orychophragmus violaceus (Ov, a karst-adaptable plant) as plant materials, employed a bidirectional nitrogen-isotope-tracing method, and performed the quantification of the contribution of EMP and PPP. We found that bicarbonate and ammonium inhibited glucose metabolism and nitrogen utilization in Bn under simulated karst habitats. On the other hand, it resulted in a shift from EMP to PPP to promote ammonium utilization in Ov under high ammonium stress in karst habitats. Compared with Bn, bicarbonate promoted glucose metabolism and nitrogen utilization in Ov at low ammonium levels, leading to an increase in photosynthesis, the PPP, carbon and nitrogen metabolizing enzyme activities, nitrate/ammonium utilization, and total inorganic nitrogen assimilation capacity. Moreover, bicarbonate significantly reduced the growth inhibition of Ov by high ammonium, resulting in an improved PPP, RCRUBP, and ammonium utilization to maintain growth. Quantifying the relationships between EMP, PPP, NO3-, and NH4+ utilization can aid the accurate analysis of carbon and nitrogen use efficiency changes in plant species. Therefore, it provides a new prospect to optimize the nitrate/ammonium utilization in plants and further reveals the differential responses of inorganic carbon and nitrogen (C-N) metabolism to bicarbonate and variable ammonium in karst habitats.

3.
Animals (Basel) ; 12(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36428420

RESUMO

The aim of this experiment was to explore the effects of a new selenium (Se) source from Se-enriched Cardamine enshiensis (SeCe) on body weight loss, anti-oxidative capacity and meat quality of broilers under transport stress. A total of 240 one-day-old ROSS 308 broilers were allotted into four treatments with six replicate cages and 10 birds per cage using a 2 × 2 factorial design. The four groups were as follows: (1) Na2SeO3-NTS group, dietary 0.3 mg/kg Se from Na2SeO3 without transport stress, (2) SeCe-NTS group, dietary 0.3 mg/kg Se from SeCe without transport stress, (3) Na2SeO3-TS group, dietary 0.3 mg/kg Se from Na2SeO3 with transport stress, and (4) SeCe-TS group, dietary 0.3 mg/kg Se from SeCe with transport stress. After a 42 d feeding period, the broilers were transported by a lorry or kept in the original cages for 3 h, respectively. The results showed that dietary SeCe supplementation alleviated transport-stress-induced body weight loss and hepatomegaly of the broilers compared with the broilers fed Na2SeO3 diets (p < 0.05). Furthermore, dietary SeCe supplementation increased the concentrations of plasma total protein and glucose, and decreased the activities of aspartate aminotransferase and alanine aminotransferase of the broilers under transport stress (p < 0.05). Dietary SeCe supplementation also enhanced the anti-oxidative capacity and meat quality in the breast and thigh muscles of the broilers under transport stress (p < 0.05). In summary, compared with Na2SeO3, dietary SeCe supplementation alleviates transport-stress-induced body weight loss, anti-oxidative capacity and meat quality impairments of broilers.

4.
Food Chem ; 395: 133547, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35780669

RESUMO

The antioxidant properties of Se-containing peptides from Cardamine enshiensis (SeCPPs) and their impact on gut microbiota were studied in d-galactose (d-gal)- injected mice and antibiotic-treated mice. The structures of SeCPPs were identified by UPLC-Q-Extractive Orbitrap MS. In d-gal ageing mice, SeCPPs were associated with significantly decreased acetyl cholinesterase (AchE) activity, malondialdehyde (MDA) content, increased glutathione peroxidase (GSH-Px) activity, downregulated tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) levels (p < 0.05), and improved memory. In antibiotic-treated mice, SeCPPs were associated with reduced Proteobacteria and evaluated Akkermansia abundances (p < 0.01). Eighty-five Se-containing peptides were identified in SeCPPs. Peptides such as RV-SeM-I, RA-SeM-T and R-SeC-K showed low binding energy with 1,1-diphenyl-2-picrylhydrazyl (DPPH), and their binding affinities were confirmed by molecular docking. Overall, compared with Na2SeO3 and SeMet, SeCPPs showed superior antioxidant activity via their association with higher antioxidant enzyme activity, scavenging free radical properties and gut microbiome modulation.


Assuntos
Cardamine , Microbioma Gastrointestinal , Selênio , Animais , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Cardamine/metabolismo , Galactose/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Estresse Oxidativo , Peptídeos/metabolismo , Selênio/farmacologia
5.
Environ Pollut ; 257: 113495, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31733958

RESUMO

Sclerotinia sclerotiorum (S. sclerotiorum) is a soil-borne pathogen causing serious damage to the yield of oilseed rape. Selenium (Se) acted as a beneficial element for plants, and also proved to inhibit the growth of plant pathogens. However, whether Se could reduce S. sclerotiorum infection in oilseed rape, the related mechanism is still unclear. In this study, proper Se levels (0.1 mg/kg and 0.5 mg/kg) applied in soil decreased the lesion diameter and incidence of S. sclerotiorum in rape leaves. Se enfeebled the decrease of net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr), and maintained leaf cell structure. Se enhanced the antioxidant system of leaves, as evidenced by the maintenance of mitochondrial function, reduction of reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) content, and the improvement of antioxidant enzyme activities including catalase (CAT), polyphenol oxidase (PPO) and peroxidase (POD). The upregulated defense gene expressions (CHI, ESD1, NPR1 and PDF1.2) of leaves were also observed under Se treatments. Furthermore, metabolome analysis revealed that Se promoted the metabolism of energy and amino acids in leaves infected with S. sclerotiorum. These findings inferred that Se could act as a potential eco-fungicide to protect oilseed rape leaves from S. sclerotiorum attack. The result arising from this study not only introduces an ecological method to control S. sclerotiorum, but also provides a deep insight into microelement for plant protection.


Assuntos
Ascomicetos/efeitos dos fármacos , Brassica napus/microbiologia , Fungicidas Industriais/farmacologia , Selênio/farmacologia , Antioxidantes/metabolismo , Infecções , Doenças das Plantas/prevenção & controle , Folhas de Planta/efeitos dos fármacos , Solo
6.
J Hazard Mater ; 369: 601-610, 2019 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-30825806

RESUMO

Sclerotinia sclerotiorum (S. sclerotiorum) is a soil-borne pathogen with broad host range. Dissolved organic matter (DOM) plays a vital role in regulating microbial activity in soil. Exogenous selenium (Se) inhibits plant pathogen growth and enhances the capacity of plants to resist disease. DOM from rape straw with Se treated in soil (RSDOMSe) was extracted, and the inhibitory effect on S. sclerotiorum growth was investigated. RSDOMSe inhibited S. sclerotiorum growth, which not only caused severe damage to S. sclerotiorum hyphae but also enhanced soluble protein leakage, thereby improving the growth inhibition ratio by 20.9%. As the action in intercellular, RSDOMSe led to a significant increase in oxalic acid and decrease in CWDE (cell wall-degrading enzyme, which helps pathogens to invade plants) activities, downregulation of Bi1 (BAX inhibitor-1, required for S. sclerotiorum virulence), Ggt1 (γ-glutamyl transpeptidase, regulates the ROS antioxidant system), CWDE2 and CWDE10 gene expression levels, compared with non-Se treated RSDOM (RSDOMN). Eight metabolites upregulated in RSDOMSe were identified by GC-TOF-MS, and among these metabolites, fumaric acid, maleic acid, malonic acid, mucic acid, saccharic acid, succunic acid and phenylacetic acid showed significant inhibition on S. sclerotiorum growth. These findings provide valuable insight into a new approach for developing eco-friendly fungicides.


Assuntos
Ascomicetos/efeitos dos fármacos , Brassica napus/química , Fungicidas Industriais/farmacologia , Compostos Orgânicos/farmacologia , Selênio/química , Microbiologia do Solo , Solo/química , Ascomicetos/crescimento & desenvolvimento , Parede Celular/química , Fungicidas Industriais/química , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Hifas/efeitos dos fármacos , Compostos Orgânicos/química , Ácido Oxálico/metabolismo , Doenças das Plantas/microbiologia
7.
Open Life Sci ; 14: 318-326, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33817165

RESUMO

The perennial selenium (Se) hyperaccumulator Cardamine hupingshanensis (Brassicaceae) thrives in aquatic and subaquatic Se-rich environments along the Wuling Mountains, China. Using bright-field and epifluorescence microscopy, the present study determined the anatomical structures and histochemical features that allow this species to survive in Se-rich aquatic environments. The roots of C. hupingshanensis have an endodermis with Casparian walls, suberin lamellae, and lignified secondary cell walls; the cortex and hypodermal walls have phi (Φ) thickenings; and the mature taproots have a secondary structure with a periderm. The stems possess a lignified sclerenchymal ring and an endodermis, and the pith and cortex walls have polysaccharide-rich collenchyma. Air spaces are present in the intercellular spaces and aerenchyma in the cortex and pith of the roots and shoots. The dense fine roots with lignified Φ thickenings and polysaccharide-rich collenchyma in the shoots may allow C. hupingshanensis to hyperaccumulate Se. Overall, our study elucidated the anatomical features that permit C. hupingshanensis to thrive in Se-rich aquatic environments.

8.
Pestic Biochem Physiol ; 150: 10-16, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30195382

RESUMO

Selenium (Se) in soil is beneficial for environmental stress tolerance of plants, and it has widespread toxic effects on pathogens. Based on the fact that Se significantly inhibited the growth of Sclerotinia sclerotiorum, we set experiments with different concentrations of Se to investigate the action of Se against S. sclerotiorum in this study. The results showed that Se (>0.5 mg L-1) changed the morphology of S. sclerotiorum mycelia, and higher Se concentrations severely damaged mycelial structures. Fourier transform infrared spectroscopy (FTIR) analysis indicated that Se treatment induced the chemical composition of mycelia with much abundance of functional groups such as alcohols, ketones, ammonium and esters, and 0.5 mg L-1 Se maximized their concentrations. Under Se treatments, the electrical conductivity of mycelia increased in a time-dependent manner, and osmolyte concentrations of mycelia increased as well. Se supplementation significantly reduced polymethylgalacturonase (PMG) and carboxymethylcellulase (Cx) activities, which protecting plants from infection, and increased the energy expenditure in S. sclerotiorum. Combined action of Se damage on membrane system, osmoregulation, reduction of cell wall degrading enzymes activities and improvement of energy expenditure resulted in the inhibition of S. sclerotiorum growth. Findings in this study provided evidences for using Se as a potential fungicide to control S. sclerotiorum.


Assuntos
Ascomicetos/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Selênio/farmacologia , Trifosfato de Adenosina/metabolismo , Ascomicetos/enzimologia , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/metabolismo , Parede Celular/enzimologia , Celulase/metabolismo , Condutividade Elétrica , Glicosídeo Hidrolases/metabolismo , Microscopia Eletrônica de Varredura , Micélio/efeitos dos fármacos , Micélio/ultraestrutura , Osmorregulação , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...